The training introduces the participant to the tools and techniques commonly used in practice for stability studies. Single-machine and Multi-machine power system models are studied, using steady state, time-domain and frequency-domain techniques.

This two-day course provides a comprehensive overview about the dynamic models of elements and all the stability types:

- Transient Stability
- Oscillatory Stability
- Voltage Stability
- Frequency Stability

Each topic above includes a theoretical background and a practical part where participants acquire hands-on experience in the use of PowerFactory.

WHO SHOULD ATTEND:
- Utility engineers
- Power system operators
- Project developers
- Manufacturers
- Consultants
- Electrical engineers in general

Participants should be familiar with PowerFactory basics and should have some experience with PowerFactory’s time domain simulation functions or have attended the introductory courses: “Time Domain Simulation in PowerFactory” / “Load Flow and Short Circuit Calculation”.

PRICE PER PARTICIPANT:
- $1,312.40 (with valid maintenance contract)
- $1,480.00 (without valid maintenance contract)
- $444.00 (with valid student identification)

* Prices do not include GST.

Central Standard Time (UTC-06:00)

Training schedule

DAY 1

9:00 Introduction to Power System Stability
- Fundamentals of power system stability. Classification according to IEEE: rotor angle, voltage and frequency stability. Synchronous machine model.

10:00 Transient Stability

10:30 Coffee break

11:00 Exercise: Transient Stability in a SMIB

11:45 Exercise: Transient Stability in a Multi-Machine Network
- Critical clearing time calculation using a DPL script. Effect of the inertia and the impedance of the system on the transient stability problems. Calculation of the breaker times.

12:30 Lunch break

13:30 Oscillatory Stability (small-signal)

14:30 Exercise: Oscillatory Stability in a SMIB
- Identification of the local mode of a single machine connected to an infinite bus. Analysis done in time and frequency-domain analysis. Impact of the AVR and PSS.

15:00 Coffee break

15:30 Exercise: Oscillatory Stability in a Multi-Machine Network

17:00 End of the first day

DAY 2

9:00 Voltage Stability

10:00 Exercise: Steady State Voltage Stability
- Calculation of busbars sensitivities, PV & QV curves considering contingencies, effect of modifying the load size and power factor.

10:30 Coffee break

11:00 Exercise: Dynamic Voltage Stability
- Study of voltage stability by time domain analysis, RMS simulation. Effect of the load modeling, motors contribution and AVR dynamic response.

12:30 Lunch break

13:30 Frequency Stability
- Fundamentals. Definition of the different stages of the frequency stability analysis and factors contributing in each stage: power system configuration and primary reserve, under-frequency load shedding.

15:00 Coffee break

15:30 Exercise: Frequency Stability in a Multi-Machine Network
- Frequency stability during disturbances. Critical clearing time of power system and load modeling, inertia, area separation and load shedding. Comparison between different methods to improve frequency stability.

17:00 End of the training course